

Overview of Linux I/O capabilities

Speaker:

Urh Srečnik <urh.srecnik@abakus.si>

mailto:urh.srecnik@abakus.si

Abakus Plus d.o.o.

● Infrastructure Team
● Services

– OS & NET admin

– DBA, Programming

● Applications
– Deja Vu

– APPM

– Arbiter

● Development Team
● Enterprise

Applications

● Document Management

● Newspaper Distribution

● Flight Information
System

References

Linux ate my ram!

● https://www.linuxatemyram.com/

● Sometimes we do not want to populate the cache with
one-time contents because we want other apps to keep
their cached files.

● Great example would be a backup script

● Btw, from KVM hypervisor’s perspective,
populated page cache inside VM is used (RSS) memory.

https://www.linuxatemyram.com/

Live Demo

Limiting page cache usage

● Cgroups

● sync; echo 3 > /proc/sys/vm/drop_caches
● dd if=random.iso iflag=nocache count=0

nocache uses POSIX_FADVISE to drop cache for whole file

live demo recap

POSIX_FADV_DONTNEED​

$ man fadvise, man posix_fadvise

#include <fcntl.h>

int posix_fadvise(int fd, off_t offset, off_t len, int advice);

Do not expect access in the near future. Subsequent access of
pages in this range will succeed, but will result either in reloading
of the memory contents from the underlying mapped file or zero-
fill-in-demand pages for mappings without an underlying file. ​

live demo recap

POSIX_FADV_DONTNEED

real user sys
always 9,12 0,65 8,19
after 16mb 8,87 0,60 8,05
after 32mb 8,88 0,61 8,00
after 64mb 8,63 0,62 7,80
after 256mb 8,37 0,58 7,63
never 7,37 0,62 6,36

live demo recap

FADV_SEQUENTIAL​

POSIX_FADV_NORMAL sets the readahead window to
the default size for the backing device;
POSIX_FADV_SEQUENTIAL doubles this size,
POSIX_FADV_RANDOM disables file readahead
entirely.​

live demo recap

stdio

● open()
● read()
● close()

live demo recap

stdio

Image from https://mattermost.com/blog/iouring-and-go/

https://mattermost.com/blog/iouring-and-go/

uring

Images from https://mattermost.com/blog/iouring-and-go/

https://mattermost.com/blog/iouring-and-go/

aio

● open()
● io_setup()
● io_prep_pread()
● io_submit()
● io_getevents()
● io_destroy()
● close()

live demo recap

uring

● open()
● io_uring_queue_init()
● io_uring_get_sqe()
● io_uring_prep_read()
● io_uring_sqe_set_data()
● io_uring_submit()
● io_uring_wait_cqe()
● io_uring_cqe_get_data()
● io_uring_cqe_seen()
● io_uring_queue_exit()
● close()

live demo recap

uring vs aio

● https://kernel.dk/io_uring.pdf

● aio only supports async IO for O_DIRECT

● aio may block for metadata operations

● uring is newer »replacement« for aio
● more features, »faster«

● aio requires kernel ~2.6 or newer

● uring requires kernel ~5.6 or newer

https://kernel.dk/io_uring.pdf

Dirty Pages

● vm.dirty_background_[ratio|bytes]
how many dirty pages before sync starts

● vm.dirty_[ratio|bytes]
how many dirty pages before i/o is blocked until
sync frees up the required space

● vm.dirty_expire_centisecs
how long can a dirty page be in cache before sync
starts

● vm.dirty_writeback_centisecs
how often should kernel check if something needs
to be done

fsync()

● fsync(), sync() causes all pending modifications to
filesystem metadata and cached file data to be
written to the underlying filesystems.

● fsync(int fd), syncfs(int fd) is like sync(), but
synchronizes just the filesystem containing file
referred to by the open file descriptor fd.

● Usage example: Oracle redolog files

sync_file_range()

SYNC_FILE_RANGE_WAIT_BEFORE​
 | SYNC_FILE_RANGE_WRITE​
 | SYNC_FILE_RANGE_WAIT_AFTER​

will ensure that all pages in the specified range which
were dirty when sync_file_range() was called are
committed to disk.​

fallocate()
FALLOC_FL_PUNCH_HOLE

Specifying the FALLOC_FL_PUNCH_HOLE flag
deallocates space (i.e., creates a hole) in the byte
range starting at offset and continuing for len bytes.

Within the specified range, partial file system blocks
are zeroed, and whole file system blocks are removed
from the file. After a successful call, subsequent reads
from this range will return zeroes.

http://www.abakus.si/

http://www.abakus.si/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22

